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Abstract. The Cornwall-Jackiw-Tomboulis (CJT) effective action for composite operators at finite tem-
perature is used to investigate the chiral phase transition within the framework of the linear sigma model
as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescrip-
tion for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study,
which incorporates both thermal and quantum effect, shows that in this approximation the phase transition
is of first order. However, taking into account the higher-loop diagrams contribution the order of phase
transition is unchanged.

PACS. 11.10.Wx Finite-temperature field theory – 11.10.Gh Renormalization – 11.30.Rd Chiral symme-
tries – 05.70.Fh Phase transitions: general studies

1 Introduction

In recent years the study of the phase transitions has be-
come the subject of intense investigation since it is very
important from various aspects, ranging from cosmology
to particle physics. According to the big bang model there
is a series of phase transitions, including, of course, the
chiral phase one, at the early stage of the universe evo-
lution. The nature of the electroweak phase transition
has called much attention due to the suggestion that the
baryon asymmetry may be generated at the electroweak
scale if the transition is of first order [1]. The restora-
tion of chiral symmetry may lead to several interesting
phenomena observed, for instance, in the dilepton mass
spectrum [2] or in the formation of disoriented chiral con-
densates [3]. The quantum chromodynamics (QCD) is chi-
rally symmetric for the light-quark sector and must be
spontaneously broken due to the existence of pions, the
Nambu-Goldstone (NG) bosons. The lattice QCD calcu-
lations indicate that the restoration of chiral symmetry
occurs at temperatures of order 150 MeV [4], which is
expected to be probed in ultrarelativistic heavy-ion col-
lision experiments planned at RHIC and LHC [5]. The
field-theoretical investigation of the symmetry restoration
at finite temperatures was first carried out by Kirzhnits
and Linde [6] and then was systematically developed by
Weinberg [7], Dolan and Jackiw [8] as well as many oth-
ers adopting the effective action as the most appropriate
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formalism for such studies. It was proved that the lead-
ing contributions at very high temperatures come from
an infinite series of certain class of multiloop diagrams in
perturbation theory, which, in the λφ4 theory, are the so-
called daisy and superdaisy diagrams. Recently the effec-
tive action for composite operators, originally introduced
by Cornwall, Jackiw and Tomboulis [9] at zero tempera-
ture, has been extended for finite temperatures in the λφ4

theory by Amelino-Camelia and Pi [10], who showed that
one needs to resume only “double-bubble” graphs instead
of summing an infinite set of daisy and superdaisy graphs
using the tree-level propagators. This is known as Hartree-
Fock approximation [11]. Moreover, the CJT formalism at
finite temperatures leads to reliable results [12,13], among
other approximate approaches.

Many works on chiral-symmetry restoration at high
temperatures have been accomplished [14–20] within the
framework of the linear sigma model, which is considered
to be the relevant model [21] for effective theory in low-
energy phenomenology of QCD modelling the hadron dy-
namics associated to the chiral phase transition. However,
there exists serious difficulty concerning the renormaliza-
tion of the CJT effective action in the Hartree-Fock ap-
proximation. The point is that a consistent renormaliza-
tion cannot be performed in the broken phase because
all terms in the effective action are expressed not only
by renormalized quantities but bare quantities remain in
several terms [15]. In [16–19] one tried to regularize di-
vergent integrals by means of several schemes instead of
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renormalizing the CJT effective action in the Hartree-Fock
approximation at finite temperatures.

In this work, dealing with the chiral phase transition at
finite temperatures, we re-examine the linear sigma model
since it is most suited for our purpose of describing the
phase transition in a self-consistent approximation. We
do not consider the general O(N) linear sigma model at
large-N limit because it significantly simplifies the count-
ing of multiloop bubble diagrams, which is the most com-
mon source of inaccuracy.

We use the imaginary time formalism of Matsub-
ara [22] and work in Euclidean space-time. The Feynman
rules are the same as those at zero temperature, except
that∫

d4k

(2π)4
f(k) → 1

β

∑
n

∫
d3k

(2π)3
f(ωn,�k) ≡

∫
β

f(k),

where ωn = 2πn/β.
This paper is organized as follows. Section 2 is de-

voted to calculating the CJT effective potential at finite
temperatures in the Hartree-Fock approximation. Here, a
new renormalization prescription is proposed. A numerical
computation is presented in sect. 3. The higher-loop dia-
gram contribution in the vicinity of critical temperature
is considered in sect. 4. Finally, conclusion and discussion
are given in sect. 5.

2 The CJT effective potential

The Lagrangian density of the O(4) linear sigma model
reads

L =
1
2

(∂µφ
α)2 +

m2

2
φ2 +

λ

24
(φ2)2, (2.1)

where φ2 = φαφα; φi = πi, i = 1, 2, 3; φ4 = σ.
The counterterms, which must be added to (2.1), are

chosen as

∆L =
δm2

2
φ2 +

δλ

24
(φ2)2 + δΩ, (2.2)

in which the counterterm δΩ is introduced for vacuum
energy. As a rule, all divergences of the theory have to be
absorbed by the counterterms (2.2).

By shifting the field as φα(x) → φα(x) + φα
0 , the tree-

level propagators Dαβ have the form

D−1
αβ =

δ2I(φ)
δφα(x)δφβ(y)

∣∣∣∣
φ=φ0

=

[
∂2

µ +m2 + δm2 +
λ+ δλ

6
φ2

0

]
δαβδ4(x− y)

+
λ+ δλ

3
φα

0φ
β
0 δ

4(x− y). (2.3)

Here I(φ) is the classical action

I(φ) =
∫

d4x(L +∆L).

In momentum space, D−1
αβ is written as

D−1
αβ (k;φ0) =

[
k2 +m2 + δm2 +

λ+ δλ
6

φ2
0

]

×δαβ +
λ+ δλ

3
φα

0φ
β
0 . (2.4)

The interaction action, describing the vertices of the
shifted theory, is given by

Iint(φ, φ0) =
∫

d4x

[
λ+ δλ

6
φ2φαφα

0 +
λ+ δλ

24
(φ2)2

]
.

Then, for constant φ0, we arrive at the CJT effective po-
tential at finite temperatures:

V CJT
β (φ0, G) = I(φ0) +

1
2

∫
β

tr lnG−1(k)

+
1
2

∫
β

tr
[
D−1(k;φ0)G(k)

]
+ V CJT

2 (φ0, G).

Here,Gαβ(k) is the full propagator of the theory and V CJT
2

is the sum of all two and higher-order loop two-particle ir-
reducible vacuum graphs of the theory with vertices given
by Iint(φ, φ0) and propagators set equal to Gαβ(k). The
graphs shown in fig. 1 are under discussion. It is clear
that, among them, only the two-loop graph, the “double-
bubble” one, of order O(λ) includes contributions from
daisy and superdaisy graphs of ordinary perturbation the-
ory. It is known that truncating the series at O(λ) is the
Hartree-Fock approximation.

Therefore, the CJT effective potential at finite tem-
peratures in the Hartree-Fock approximation is derived:

V CJT
β (φ0, G) = δΩ +

m2 + δm2

2
φ2

0 +
λ+ δλ

24
(φ2

0)2

+
1
2

∫
β

tr lnG−1(k) +
1
2

∫
β

tr
[
D−1(k;φ0)G

]

+
λ+ δλ

24

{[∫
β

Gαα(k)
]2

+ 2
∫

β

Gαβ(k)
∫

β

Gβα(k)

}
.

(2.5)

Minimizing V CJT
β (φ0, G) with respect toGαβ(k) we obtain

the Schwinger-Dyson (SD) equations for propagators:

G−1
αβ(p) = D−1

αβ (p;φ0) +
λ+ δλ

6

×
[
δαβ

∫
β

Gδδ(k) + 2
∫

β

Gαβ(k)
]
. (2.6)

Basing on the structure of (2.6) and the O(4) symmetry
we adopt the following ansatz for propagators Gαβ in the
Hartree-Fock approximation:

G−1
αβ(p) = (p2 +X2)δαβ + Y 2φ

α
0φ

β
0

φ2
0

. (2.7)
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Fig. 1. Two-particle irreducible graphs contributing to Γ2(φ, G) up to the three-loop level in the λφ4 theory. The solid line
represents the propagator G(x, y). There are two kinds of vertices: a three-particle vertex proportional to λφ and a four-particle
vertex.

Inserting (2.7) into (2.5) provides

V CJT
β (φ0,Mσ,Mπ) = δΩ +

m2 + δm2

2
φ2

0

+
λ+ δλ

24
(φ2

0)2 +Q(Mσ) + 3Q(Mπ)

+
1
2

(
m2 + δm2 +

λ+ δλ
2

φ2
0 −M2

σ

)
P (Mσ)

+
3
2

(
m2 + δm2 +

λ+ δλ
6

φ2
0 −M2

π

)
P (Mπ) +

λ+ δλ
24

×
{

3 [P (Mσ)]2+15 [P (Mπ)]2+6P (Mσ)P (Mπ)
}
, (2.8)

where

Mσ = X2 + Y 2,

Mπ = X2,

and

Q(M) =
1
2

∫
β

ln(k2 +M2),

P (M) =
∫

β

1
k2 +M2

.

In order to regularize the divergent integrals P (M)
and Q(M), contained in the expression (2.8) of the effec-
tive potential, let us use the three-dimensional momentum
cutoff scheme, in which every divergent integral is written
as the sum of a divergent part and a finite part, namely

Q(M) = DivQ(M) +Qf(M),

DivQ(M) = −M
4

4
I2 +

M2

2
I1,

Qf(M) =
M4

64π2

(
ln
M2

µ2
− 1

2

)

+T
∫

d3k

(2π)3
ln

(
1 − e−E(�k)

T

)
,

P (M) = DivP (M) + Pf(M),

DivP (M) = I1 −M2I2,

Pf(M) =
M2

16π2
ln
M2

µ2
−

∫
d3k

(2π)3

[
E(�k)

(
1−eE(�k)

T

)]−1

,

I1 =
Λ2

8π2
, I2 =

1
16π2

ln
Λ2

µ2
, E(�k) = (�k2 +M2)1/2.

Now the renormalization is carried out so that all infi-
nite terms appearing in (2.8) must be eliminated. For this
end, the counterterms δΩ, δm2 and δλ are chosen to obey
the following constraints:

δΩ + DivQ(Mσ) + 3DivQ(Mπ) = 0, (2.9)

δm2

2
[
φ2

0 + P (Mσ) + 3P (Mπ)
]

+
δλ

4

{
(φ2

0)2

6
+ φ2

0P (Mσ) + φ2
0P (Mπ)

+
1
2

[P (Mσ)]2 +
5
2

[P (Mπ)]2 + P (Mσ)P (Mπ)
}

+
1
2

(
m2 +

λ

2
φ2

0 −M2
σ

)
DivP (Mσ)

+
3
2

(
m2 +

λ

6
φ2

0 −M2
π

)
DivP (Mπ)

+
λ

24

{
3Div [P (Mσ)]2 + 15Div [P (Mπ)]2

+6Div [P (Mσ)P (Mπ)]
}

= 0 . (2.10)

(2.10) is a linear equation of two unknowns δm2 and δλ,
it has an infinite number of roots. In the following are the
two simplest cases:

a) δm2 = 0,
b) δλ = 0.
In the first case δλ tends to a finite limit as Λ→ +∞

and in the second case δm2 tends to infinity as Λ→ +∞.
As a rule, both cases are equally accepted for renormal-
izing the CJT effective potential in the Hartree-Fock ap-
proximation. In general, the counterterms are temperature
dependent as was mentioned in [14].

We obtain ultimately the renormalized effective poten-
tial at finite temperatures

V CJT
β (φ0,Mσ,Mπ) =

m2

2
φ2

0 +
λ

24
(φ2

0)2 +Qf(Mσ)

+3Qf(Mπ) +
1
2

(
m2 +

λ

2
φ2

0 −M2
σ

)
Pf(Mσ)

+
3
2

(
m2 +

λ

6
φ2

0 −M2
π

)
Pf(Mπ)

+
λ

8

{
[Pf(Mσ)]2 + 5 [Pf(Mπ)]2 + 2Pf(Mσ)Pf(Mπ)

}
.

(2.11)
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The SD equations for M2
σ and M2

π and the gap equation
for the sigma condensate are, respectively, derived from
(2.11) for φ4

0 = σ, φi
0 = πi = 0,

M2
σ = m2 +

λ

2
σ2

0 +
λ

2
Pf(Mσ) +

λ

2
Pf(Mπ), (2.12)

M2
π = m2 +

λ

6
σ2

0 +
λ

6
Pf(Mσ) +

5λ
6
Pf(Mπ), (2.13)

and (
dV CJT

β

dφ4
0

)
φ4

0 = σ0

φi
0 = 0

=

σ0

(
m2 +

λ

6
σ2

0 +
λ

2
Pf(Mσ) +

λ

2
P (Mπ)

)
= 0,

or

m2 +
λ

6
σ2

0 +
λ

2
Pf(Mσ) +

λ

2
P (Mπ) = 0. (2.14)

Taking into account (2.12) the equation (2.14) reduces to

λ

3
σ2

0 −M2
σ = 0. (2.15)

Adopting the argument of [19] we distinguish the ef-
fective masses of mesons, Mσ and Mπ, as those appearing
in the approximate propagators, from the physical masses
which are defined as the curvatures of the effective poten-
tial around its minimum,

m2
σ

def.=

(
d2V CJT

β

dσ2

)
σ = σ0
π = 0

, (2.16)

m2
π

def.=

(
d2V CJT

β

dπ2

)
σ = σ0
π = 0

= 0, (2.17)

in the broken-symmetry phase.
Equations (2.12)-(2.15) enable us to determine the

“transition temperature” Tc1, at which the broken chi-
ral symmetry is restored: σ0, Mσ and Mπ tend to zero
as T → Tc1 − 0. Indeed, eq. (2.15) tells that Mσ → 0 as
σ0 → 0 and eq. (2.13) simplifies to

M2
π = m2 + λPf(Mπ). (2.18)

When Mπ vanishes as T → Tc1, i.e.Mπ/Tc1 � 1, we have
the expression

Pf(Mπ) ≈ T 2
c1

[
1
12

− 1
4π
Mπ

Tc1
− 1

16π2

M2
π

T 2
c1

ln
M2

π

T 2
c1

]
. (2.19)

Combining (2.18) and (2.19) leads to

Tc1 ≈
√

2
(
−6m2

λ

)1/2

=
√

2fπ ≈ 131.5 MeV.

Here fπ = 93 MeV is the pion decay constant.

3 Numerical study in the Hartree-Fock
approximation

Let us first introduce a term explicitly breaking chiral
symmetry into the Lagrangian density

L =
1
2

(∂µφ
α)2 +

m2 + δm2

2
φ2

+
λ+ δλ

24
(φ2)2 + δΩ − cσ. (3.1)

The renomalized effective potential corresponding to (3.1)
reads

V CJT
β (σ0,Mσ,Mπ) =

m2

2
σ2

0 +
λ

24
σ4

0 − cσ0 +Qf(Mσ)

+3Qf(Mπ) +
1
2

(
m2 +

λ

2
σ2

0 −M2
σ

)
Pf(Mσ)

+
3
2

(
m2 +

λ

6
σ2

0 −M2
π

)
Pf(Mπ)

+
λ

8

{
[Pf(Mσ)]2 + 5 [Pf(Mπ)]2 + 2Pf(Mσ)Pf(Mπ)

}
,

(3.2)

which leads to the gap equation for the sigma conden-
sate σ0

σ0

(
M2

σ − λ

3
σ2

0

)
= c. (3.3)

The SD equations for Mσ and Mπ, derived from (3.2),
have the same form (2.12) and (2.13). Inserting these equa-
tions into (3.2) we arrive at

V (σ0, T ) =
m2

2
σ2

0 +
λ

24
σ4

0 − cσ0 +Qf(Mσ)

+3Qf(Mπ) − λ

8
[Pf(Mσ)]2 − 5λ

8
[Pf(Mπ)]2

−λ
4
Pf(Mσ)Pf(Mπ). (3.4)

Now the physical mass of the pion no longer vanishes
in the broken-symmetry phase and equals

m2
π =

c

σ0
. (3.5)

For numerical computation we use the model parame-
ters at zero temperature as initial condition, namely

c = fπm
2
π at T = 0 ,

λ =
3
f2

π

(m2
σ −m2

π) at T = 0 ,

m2 = −1
2
m2

σ +
3
2
m2

π at T = 0 .

We take mπ = 138 MeV, mσ = 500 MeV and fπ =
93 MeV at T = 0.

For convenience, let us consider two separate cases.
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600

Mσ

Mπ

Mσ=Mπ

Fig. 2. The temperature-dependent solution of the SD equa-
tions in the chiral limit.

3.1 Hartree-Fock approximation in the chiral limit
c = 0

In addition to the preceding parameters, the regulariza-
tion introduced another parameter µ2, which corresponds
to the renormalization scale. Therefore, we must first de-
termine a suitable value µ2

0 for µ2, then all other quantities
are determined at µ2 = µ2

0. The value µ2
0 is determined as

the real root of the following equation:

σ0(µ2, 0)|µ2=µ2
0

= fπ = 93 MeV,

where σ0(µ2, 0) is a solution of the system of eqs. (2.12),
(2.13) and (2.14) at T = 0.

The numerical computation gives µ0 = 539.6 MeV1.
Eliminating σ0 from (2.12)-(2.14) we get

M2
σ = −2m2 − λPf(Mσ) − λPf(Mπ),

M2
π = −λ

3
Pf(Mσ) +

λ

3
Pf(Mπ). (3.6)

Inserting µ = µ0 into the system (3.6) and then solving
numerically the preceding system of two equations we ob-
tain the solution presented in fig. 2. As is shown in fig. 3
the temperature Tc1, calculated above by means of the
high-temperature approximation, is very close to the one,
obtained by numerically solving the system (2.12)-(2.14).
As the temperature increases from zero, the order param-
eter decreases from fπ, jumps to zero at Tc1 and remains
zero above Tc1. In the meanwhile, the effective masses of
mesons, Mσ and Mπ, change along the upper lines, jump
to lower coinciding line at Tc1 and increase along this line.
It is clear that the phase transition is of first-order. The in-
dication of a first order phase transition has been reported
in many publications [14–20].

Next let us compute numerically the effective potential
V (σ0, T ), given by (3.4), as a function of the temperature
and the order parameter. This will give more insight into
the nature of phase transition. In fig. 4 is depicted the

1 which corresponds to Mσ = 481.58 MeV, Mπ = 73.53 MeV
at T = 0.

50 100 150 200 250 300

T (MeV)

20

40

60

80

100

120

σ0 T( )

Fig. 3. Evolution of the order parameter as a function of tem-
perature.

0 20 40 60 80 100

σ0

-150

-100

-50

0

50

100

150

200

V
(

σ 0
,
T
)

Fig. 4. Evolution of the effective potential V (σ0, T ) as a
function of the order parameter σ0 for several temperature
steps: T = 197, 193, 189, 185, 181, 177, 173 MeV from top
to bottom. Two minima of V (σ0, T ) appear as degenerate at
Tc2 ≈ 185 MeV.

evolution of V (σ0, T ) against σ0 for several temperature
steps. It is found that the two minima of V (σ0, T ) appear
as degenerate at Tc2 ≈ 185 MeV. For T � 193 MeV,
V (σ0, T ) has only one minimum at σ0 = 0. The shape of
the potential confirms that a first-order phase transition
occurs.

3.2 Hartree-Fock approximation in the
broken-symmetry case c �= 0

For completeness let us now consider the case c �= 0, hence
the gap equation for the order parameter (2.14) turns out
to be[
m2 +

λ

6
σ2

0 +
λ

2
Pf(Mσ) +

λ

2
Pf(Mπ)

]
σ0 − c = 0, (3.7)

and the SD equations (2.12), (2.13) remain unchanged.
After solving numerically the system (2.12), (2.13) and

(3.7) we get the solution presented in fig. 5.
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Fig. 5. (a) Solution of the system of gap equations for c �= 0. At
low temperature Mπ coincides with the observed mπ. (b) Evo-
lution of the order parameter as a function of temperature.

Comparing the above-presented result with those ob-
tained in [16–19], we have an excellent agreement which
shows that the quantum effect is a negligible quantity.

4 The higher-loop diagrams contribution

In the preceding section it was shown that the phase tran-
sition is of first order. The Gaussian approximation [23] in
3+1 dimensions gives the same result. However, the renor-
malization group approach applied to the linear sigma
model [24,25] indicates that the phase transition is of sec-
ond order. Arnold and Espinosa [26] pointed out that loop
diagrams other than superdaisy ones are important near
critical temperature. The nature of the phase transition
in the φ4 field theory remains a basic question to be set-
tled [27]. Therefore, this requires a further investigation
on higher-loop effect. In this respect, it is necessary to
incorporate the higher-loop diagrams into consideration.
The higher-loop graph next to the double-bubble one is
the sunset graph given in fig. 6.

In a recent publication [28] Bordag and Skalozub stud-
ied, in addition to the double bubble, an infinite series of
graphs shown in fig. 7, which is motivated by the 1/N
expansion.

Fig. 6. The sunset graph.

Making use of the ansatz

G−1(p) = p2 +M2

at high temperature they concluded that the contribution
of this set of graphs does not influence significantly the
physical process, making the transition a bit stronger first
order.

Next let us generalize the consideration including an
infinite series of diagrams depicted in fig. 8.

Then the effective potential, corresponding to fig. 8,
reads

V
[8]
2 =

3
2
λ2φ2

0H +
λ2

2
K,

where

H = TrqG(q)Σ(q) {f1[λΣ(q)] + f2[λΣ(q)]} ,
K = TrqΣ

2(q) {g1[λΣ(q)] + g2[λΣ(q)]} ,
Σ(p) = TrqG(q)G(p+ q) = −©−

and f1, f2, g1, g2 are, respectively, the functions represent-
ing the series expansions given in fig. 8 with the coefficients
an, bn, cn, dn.

It is evident that

fi[0] = gi[0] = 1, i = 1, 2.

Now it is easily seen that we arrive at the same con-
clusion by applying the discussion of [28] to every fixed
expression for every function among f1, f2, g1 and g2.

5 Conclusion and discussion

We have considered the O(4) linear sigma model at finite
temperature within the framework of the CJT formalism
restricted to the double-bubble diagram approximation.
The renormalization of the CJT effective potential for this
model has been discussed in many papers [14–19] and one
succeeds only in the large-N limit case [29], where all di-
vergent terms are absorbed into the bare quantities. For
other case, however, not all divergences can be removed
away [15]. In the present paper, following exactly the spirit
of renormalization that requires all divergent terms must
be absorbed into counterterms, corresponding to renor-
malizing mass and coupling constant, we impose two con-
straints, (2.9) and (2.10), to ensure that only finite terms
would be still present in the effective potential. It is pos-
sible that this renormalization method is most suited for
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Fig. 7. The big dots symbolize further insertion of the subgraph −©− so that the number of vertices is n. The 3-particle vertex
∼ −λφ0, the 4-particle vertex ∼ −λ.

Fig. 8. The big dots symbolize further insertion of the subgraph −©− so that the number of vertices is n.

renormalizing the CJT effective potential in loop approx-
imations. In order for the Goldstone theorem not to be
violated, the physical masses of mesons are defined by
(2.16), (2.17) and propagators are chosen in the symmet-
ric form (2.7). The solution of the gap equations, derived
from the renormalized effective potential, and the shape of
the effective potential, as a function of the order parame-
ter exhibits a first-order phase transition with the critical
temperature Tc � 185 MeV.

To go further to higher-loop graphs we have shown
that the order of the phase transition is unchanged by
incorporating an infinite series of diagrams, in which the
sunset one is a special case.

In summary, it is possible to confirm that the phase
transition in the φ4 field theory is of first order.

The financial support from the Vietnam National Science
Foundation is acknowledged.

References

1. D.E. Brahm, S.D.H. Hsu, Report No. CALT-68-
1705/HUTP-91-A063, 1991, unpublished.

2. See, for instance, J. Wambach, in Proceedings of Quark
Matter 97, Nucl. Phys. A 638, 171c (1991).

3. See, for instance, K. Rajagopal, in Quark-Gluon Plasma
2, edited by R. Hwa (World Scientific, Singapore, 1995)
p. 484.

4. See, for instance, Proceedings of Lattice 96, Nucl. Phys. B
(Proc. Suppl.) 53, 1 (1997).

5. L. Riccati, M. Masera, E. Vercellin (Editors), Quark
Matter ’99, Proceedings of the 14th International Con-
ference on Ultrarelativistic Nucleus-Nucleus Collisions,
Turin, Italy, May 10-15, 1999, Nucl. Phys. A 661 (1999).

6. D.A. Kirzhnits, A.D. Linde, Phys. Lett. B 42, 471 (1972).

7. S. Weinberg, Phys. Rev. D 9, 3357 (1974).
8. L. Dolan, R. Jackiw, Phys. Rev. D 9, 3320 (1974).
9. J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 15,

2428 (1974).
10. G. Amelino-Camelia, So-Young Pi, Phys. Rev. D 47, 2356

(1992).
11. P. Castorina, M. Consoli, D. Zappala, Phys. Lett. B 201,

90 (1988).
12. C.G. Boyd, D.E. Brahm, S.D. Hsu, Phys. Rev. D 48, 4963

(1993).
13. M. Quiros, hep-ph/9304284.
14. G. Baym, G. Grinstein, Phys. Rev. D 15, 2897 (1977).
15. G. Amelino-Camelia, Phys. Lett. B 407, 268 (1997), hep-

ph/9702403.
16. J.T. Lenaghan, D.H. Rischke, J. Phys. G 26, 431 (2000),

nucl-th/9901049.
17. Heni-Seol Roh, T. Matsui, Eur. Phys. J. A 1, 205 (1998),

nucl-th/9611050.
18. N. Petropoulos, J. Phys. G 25, 2225 (1999), hep-

ph/9807331.
19. Y. Nemoto, K. Naito, M. Oka, Eur. Phys. J. A 9, 245

(2000).
20. N. Bilic, H. Nicolic, Eur. Phys. J. C 6, 515 (1999).
21. O. Eboli, R. Jackiw, S-Y. Pi, Phys. Rev. D 37, 3357 (1988).
22. See, for instance, J.I. Kapusta, Finite-Temperature Field

Theory (Cambridge University Press, 1989).
23. P.M. Stevenson, Phys. Rev. D 32, 1389 (1985) and refer-

ences therein.
24. K. Rajagopal, F. Wilczek, Nucl. Phys. B 399, 395 (1993);

T. Umekawa, K. Naito, M. Oka, hep-ph/9905502.
25. K. Ogure, S. Sato, Phys. Rev. D 58, 85010 (1998).
26. P. Arnold, O. Espinosa, Phys. Rev. D 47, 3546 (1993).
27. M. Consolo, P.M. Stevenson, Int. J. Mod. Phys. A 15, 133

(2000), hep-ph/9905427.
28. M. Bordag, V. Skalozub, J. Phys. A 34, 461 (2001), hep-

th/0006089.
29. S. Coleman, R. Jackiw, H.D. Politzer, Phys. Rev. D 10,

2491 (1974).


